LLM Cache#

SemanticCache#

class SemanticCache(name='llmcache', distance_threshold=0.1, ttl=None, vectorizer=None, filterable_fields=None, redis_client=None, redis_url='redis://localhost:6379', connection_kwargs={}, overwrite=False, **kwargs)[source]#

Bases: BaseLLMCache

Semantic Cache for Large Language Models.

Semantic Cache for Large Language Models.

Parameters:
  • name (str, optional) – The name of the semantic cache search index. Defaults to “llmcache”.

  • distance_threshold (float, optional) – Semantic threshold for the cache. Defaults to 0.1.

  • ttl (Optional[int], optional) – The time-to-live for records cached in Redis. Defaults to None.

  • vectorizer (Optional[BaseVectorizer], optional) – The vectorizer for the cache. Defaults to HFTextVectorizer.

  • filterable_fields (Optional[List[Dict[str, Any]]]) – An optional list of RedisVL fields that can be used to customize cache retrieval with filters.

  • redis_client (Optional[Redis], optional) – A redis client connection instance. Defaults to None.

  • redis_url (str, optional) – The redis url. Defaults to redis://localhost:6379.

  • connection_kwargs (Dict[str, Any]) – The connection arguments for the redis client. Defaults to empty {}.

  • overwrite (bool) – Whether or not to force overwrite the schema for the semantic cache index. Defaults to false.

Raises:
  • TypeError – If an invalid vectorizer is provided.

  • TypeError – If the TTL value is not an int.

  • ValueError – If the threshold is not between 0 and 1.

  • ValueError – If existing schema does not match new schema and overwrite is False.

async acheck(prompt=None, vector=None, num_results=1, return_fields=None, filter_expression=None, distance_threshold=None)[source]#

Async check the semantic cache for results similar to the specified prompt or vector.

This method searches the cache using vector similarity with either a raw text prompt (converted to a vector) or a provided vector as input. It checks for semantically similar prompts and fetches the cached LLM responses.

Parameters:
  • prompt (Optional[str], optional) – The text prompt to search for in the cache.

  • vector (Optional[List[float]], optional) – The vector representation of the prompt to search for in the cache.

  • num_results (int, optional) – The number of cached results to return. Defaults to 1.

  • return_fields (Optional[List[str]], optional) – The fields to include in each returned result. If None, defaults to all available fields in the cached entry.

  • filter_expression (Optional[FilterExpression]) – Optional filter expression that can be used to filter cache results. Defaults to None and the full cache will be searched.

  • distance_threshold (Optional[float]) – The threshold for semantic vector distance.

Returns:

A list of dicts containing the requested

return fields for each similar cached response.

Return type:

List[Dict[str, Any]]

Raises:
  • ValueError – If neither a prompt nor a vector is specified.

  • ValueError – if ‘vector’ has incorrect dimensions.

  • TypeError – If return_fields is not a list when provided.

response = await cache.acheck(
    prompt="What is the captial city of France?"
)
async aclear()#

Async clear the cache of all keys.

Return type:

None

async adelete()[source]#

Async delete the cache and its index entirely.

Return type:

None

async adisconnect()[source]#

Asynchronously disconnect from Redis and search index.

Closes all Redis connections and index connections.

async adrop(ids=None, keys=None)[source]#

Async drop specific entries from the cache by ID or Redis key.

Parameters:
  • ids (Optional[List[str]]) – List of entry IDs to remove from the cache. Entry IDs are the unique identifiers without the cache prefix.

  • keys (Optional[List[str]]) – List of full Redis keys to remove from the cache. Keys are the complete Redis keys including the cache prefix.

Return type:

None

Note

At least one of ids or keys must be provided.

Raises:

ValueError – If neither ids nor keys is provided.

Parameters:
  • ids (List[str] | None)

  • keys (List[str] | None)

Return type:

None

async aexpire(key, ttl=None)#

Asynchronously set or refresh the expiration time for a key in the cache.

Parameters:
  • key (str) – The Redis key to set the expiration on.

  • ttl (Optional[int], optional) – The time-to-live in seconds. If None, uses the default TTL configured for this cache instance. Defaults to None.

Return type:

None

Note

If neither the provided TTL nor the default TTL is set (both are None), this method will have no effect.

async astore(prompt, response, vector=None, metadata=None, filters=None, ttl=None)[source]#

Async stores the specified key-value pair in the cache along with metadata.

Parameters:
  • prompt (str) – The user prompt to cache.

  • response (str) – The LLM response to cache.

  • vector (Optional[List[float]], optional) – The prompt vector to cache. Defaults to None, and the prompt vector is generated on demand.

  • metadata (Optional[Dict[str, Any]], optional) – The optional metadata to cache alongside the prompt and response. Defaults to None.

  • filters (Optional[Dict[str, Any]]) – The optional tag to assign to the cache entry. Defaults to None.

  • ttl (Optional[int]) – The optional TTL override to use on this individual cache entry. Defaults to the global TTL setting.

Returns:

The Redis key for the entries added to the semantic cache.

Return type:

str

Raises:
  • ValueError – If neither prompt nor vector is specified.

  • ValueError – if vector has incorrect dimensions.

  • TypeError – If provided metadata is not a dictionary.

key = await cache.astore(
    prompt="What is the captial city of France?",
    response="Paris",
    metadata={"city": "Paris", "country": "France"}
)
async aupdate(key, **kwargs)[source]#

Async update specific fields within an existing cache entry. If no fields are passed, then only the document TTL is refreshed.

Parameters:

key (str) – the key of the document to update using kwargs.

Raises:
  • ValueError if an incorrect mapping is provided as a kwarg.

  • TypeError if metadata is provided and not of type dict.

Return type:

None

key = await cache.astore('this is a prompt', 'this is a response')
await cache.aupdate(
    key,
    metadata={"hit_count": 1, "model_name": "Llama-2-7b"}
)
check(prompt=None, vector=None, num_results=1, return_fields=None, filter_expression=None, distance_threshold=None)[source]#

Checks the semantic cache for results similar to the specified prompt or vector.

This method searches the cache using vector similarity with either a raw text prompt (converted to a vector) or a provided vector as input. It checks for semantically similar prompts and fetches the cached LLM responses.

Parameters:
  • prompt (Optional[str], optional) – The text prompt to search for in the cache.

  • vector (Optional[List[float]], optional) – The vector representation of the prompt to search for in the cache.

  • num_results (int, optional) – The number of cached results to return. Defaults to 1.

  • return_fields (Optional[List[str]], optional) – The fields to include in each returned result. If None, defaults to all available fields in the cached entry.

  • filter_expression (Optional[FilterExpression]) – Optional filter expression that can be used to filter cache results. Defaults to None and the full cache will be searched.

  • distance_threshold (Optional[float]) – The threshold for semantic vector distance.

Returns:

A list of dicts containing the requested

return fields for each similar cached response.

Return type:

List[Dict[str, Any]]

Raises:
  • ValueError – If neither a prompt nor a vector is specified.

  • ValueError – if ‘vector’ has incorrect dimensions.

  • TypeError – If return_fields is not a list when provided.

response = cache.check(
    prompt="What is the captial city of France?"
)
clear()#

Clear the cache of all keys.

Return type:

None

delete()[source]#

Delete the cache and its index entirely.

Return type:

None

disconnect()[source]#

Disconnect from Redis and search index.

Closes all Redis connections and index connections.

drop(ids=None, keys=None)[source]#

Drop specific entries from the cache by ID or Redis key.

Parameters:
  • ids (Optional[List[str]]) – List of entry IDs to remove from the cache. Entry IDs are the unique identifiers without the cache prefix.

  • keys (Optional[List[str]]) – List of full Redis keys to remove from the cache. Keys are the complete Redis keys including the cache prefix.

Return type:

None

Note

At least one of ids or keys must be provided.

Raises:

ValueError – If neither ids nor keys is provided.

Parameters:
  • ids (List[str] | None)

  • keys (List[str] | None)

Return type:

None

expire(key, ttl=None)#

Set or refresh the expiration time for a key in the cache.

Parameters:
  • key (str) – The Redis key to set the expiration on.

  • ttl (Optional[int], optional) – The time-to-live in seconds. If None, uses the default TTL configured for this cache instance. Defaults to None.

Return type:

None

Note

If neither the provided TTL nor the default TTL is set (both are None), this method will have no effect.

set_threshold(distance_threshold)[source]#

Sets the semantic distance threshold for the cache.

Parameters:

distance_threshold (float) – The semantic distance threshold for the cache.

Raises:

ValueError – If the threshold is not between 0 and 1.

Return type:

None

set_ttl(ttl=None)#

Set the default TTL, in seconds, for entries in the cache.

Parameters:

ttl (Optional[int], optional) – The optional time-to-live expiration for the cache, in seconds.

Raises:

ValueError – If the time-to-live value is not an integer.

Return type:

None

store(prompt, response, vector=None, metadata=None, filters=None, ttl=None)[source]#

Stores the specified key-value pair in the cache along with metadata.

Parameters:
  • prompt (str) – The user prompt to cache.

  • response (str) – The LLM response to cache.

  • vector (Optional[List[float]], optional) – The prompt vector to cache. Defaults to None, and the prompt vector is generated on demand.

  • metadata (Optional[Dict[str, Any]], optional) – The optional metadata to cache alongside the prompt and response. Defaults to None.

  • filters (Optional[Dict[str, Any]]) – The optional tag to assign to the cache entry. Defaults to None.

  • ttl (Optional[int]) – The optional TTL override to use on this individual cache entry. Defaults to the global TTL setting.

Returns:

The Redis key for the entries added to the semantic cache.

Return type:

str

Raises:
  • ValueError – If neither prompt nor vector is specified.

  • ValueError – if vector has incorrect dimensions.

  • TypeError – If provided metadata is not a dictionary.

key = cache.store(
    prompt="What is the captial city of France?",
    response="Paris",
    metadata={"city": "Paris", "country": "France"}
)
update(key, **kwargs)[source]#

Update specific fields within an existing cache entry. If no fields are passed, then only the document TTL is refreshed.

Parameters:

key (str) – the key of the document to update using kwargs.

Raises:
  • ValueError if an incorrect mapping is provided as a kwarg.

  • TypeError if metadata is provided and not of type dict.

Return type:

None

key = cache.store('this is a prompt', 'this is a response')
cache.update(key, metadata={"hit_count": 1, "model_name": "Llama-2-7b"})
property aindex: AsyncSearchIndex | None#

The underlying AsyncSearchIndex for the cache.

Returns:

The async search index.

Return type:

AsyncSearchIndex

property distance_threshold: float#

The semantic distance threshold for the cache.

Returns:

The semantic distance threshold.

Return type:

float

property index: SearchIndex#

The underlying SearchIndex for the cache.

Returns:

The search index.

Return type:

SearchIndex

property ttl: int | None#

The default TTL, in seconds, for entries in the cache.

Embeddings Cache#

EmbeddingsCache#

class EmbeddingsCache(name='embedcache', ttl=None, redis_client=None, redis_url='redis://localhost:6379', connection_kwargs={})[source]#

Bases: BaseCache

Embeddings Cache for storing embedding vectors with exact key matching.

Initialize an embeddings cache.

Parameters:
  • name (str) – The name of the cache. Defaults to “embedcache”.

  • ttl (Optional[int]) – The time-to-live for cached embeddings. Defaults to None.

  • redis_client (Optional[Redis]) – Redis client instance. Defaults to None.

  • redis_url (str) – Redis URL for connection. Defaults to “redis://localhost:6379”.

  • connection_kwargs (Dict[str, Any]) – Redis connection arguments. Defaults to {}.

Raises:

ValueError – If vector dimensions are invalid

cache = EmbeddingsCache(
    name="my_embeddings_cache",
    ttl=3600,  # 1 hour
    redis_url="redis://localhost:6379"
)
async aclear()#

Async clear the cache of all keys.

Return type:

None

async adisconnect()#

Async disconnect from Redis.

Return type:

None

async adrop(text, model_name)[source]#

Async remove an embedding from the cache.

Asynchronously removes an embedding from the cache.

Parameters:
  • text (str) – The text input that was embedded.

  • model_name (str) – The name of the embedding model.

Return type:

None

await cache.adrop(
    text="What is machine learning?",
    model_name="text-embedding-ada-002"
)
async adrop_by_key(key)[source]#

Async remove an embedding from the cache by its Redis key.

Asynchronously removes an embedding from the cache by its Redis key.

Parameters:

key (str) – The full Redis key for the embedding.

Return type:

None

await cache.adrop_by_key("embedcache:1234567890abcdef")
async aexists(text, model_name)[source]#

Async check if an embedding exists.

Asynchronously checks if an embedding exists for the given text and model.

Parameters:
  • text (str) – The text input that was embedded.

  • model_name (str) – The name of the embedding model.

Returns:

True if the embedding exists in the cache, False otherwise.

Return type:

bool

if await cache.aexists("What is machine learning?", "text-embedding-ada-002"):
    print("Embedding is in cache")
async aexists_by_key(key)[source]#

Async check if an embedding exists for the given Redis key.

Asynchronously checks if an embedding exists for the given Redis key.

Parameters:

key (str) – The full Redis key for the embedding.

Returns:

True if the embedding exists in the cache, False otherwise.

Return type:

bool

if await cache.aexists_by_key("embedcache:1234567890abcdef"):
    print("Embedding is in cache")
async aexpire(key, ttl=None)#

Asynchronously set or refresh the expiration time for a key in the cache.

Parameters:
  • key (str) – The Redis key to set the expiration on.

  • ttl (Optional[int], optional) – The time-to-live in seconds. If None, uses the default TTL configured for this cache instance. Defaults to None.

Return type:

None

Note

If neither the provided TTL nor the default TTL is set (both are None), this method will have no effect.

async aget(text, model_name)[source]#

Async get embedding by text and model name.

Asynchronously retrieves a cached embedding for the given text and model name. If found, refreshes the TTL of the entry.

Parameters:
  • text (str) – The text input that was embedded.

  • model_name (str) – The name of the embedding model.

Returns:

Embedding cache entry or None if not found.

Return type:

Optional[Dict[str, Any]]

embedding_data = await cache.aget(
    text="What is machine learning?",
    model_name="text-embedding-ada-002"
)
async aget_by_key(key)[source]#

Async get embedding by its full Redis key.

Asynchronously retrieves a cached embedding for the given Redis key. If found, refreshes the TTL of the entry.

Parameters:

key (str) – The full Redis key for the embedding.

Returns:

Embedding cache entry or None if not found.

Return type:

Optional[Dict[str, Any]]

embedding_data = await cache.aget_by_key("embedcache:1234567890abcdef")
async amdrop(texts, model_name)[source]#

Async remove multiple embeddings from the cache by their texts and model name.

Asynchronously removes multiple embeddings in a single operation.

Parameters:
  • texts (List[str]) – List of text inputs that were embedded.

  • model_name (str) – The name of the embedding model.

Return type:

None

# Remove multiple embeddings asynchronously
await cache.amdrop(
    texts=["What is machine learning?", "What is deep learning?"],
    model_name="text-embedding-ada-002"
)
async amdrop_by_keys(keys)[source]#

Async remove multiple embeddings from the cache by their Redis keys.

Asynchronously removes multiple embeddings in a single operation.

Parameters:

keys (List[str]) – List of Redis keys to remove.

Return type:

None

# Remove multiple embeddings asynchronously
await cache.amdrop_by_keys(["embedcache:key1", "embedcache:key2"])
async amexists(texts, model_name)[source]#

Async check if multiple embeddings exist by their texts and model name.

Asynchronously checks existence of multiple embeddings in a single operation.

Parameters:
  • texts (List[str]) – List of text inputs that were embedded.

  • model_name (str) – The name of the embedding model.

Returns:

List of boolean values indicating whether each embedding exists.

Return type:

List[bool]

# Check if multiple embeddings exist asynchronously
exists_results = await cache.amexists(
    texts=["What is machine learning?", "What is deep learning?"],
    model_name="text-embedding-ada-002"
)
async amexists_by_keys(keys)[source]#

Async check if multiple embeddings exist by their Redis keys.

Asynchronously checks existence of multiple keys in a single operation.

Parameters:

keys (List[str]) – List of Redis keys to check.

Returns:

List of boolean values indicating whether each key exists. The order matches the input keys order.

Return type:

List[bool]

# Check if multiple keys exist asynchronously
exists_results = await cache.amexists_by_keys(["embedcache:key1", "embedcache:key2"])
async amget(texts, model_name)[source]#

Async get multiple embeddings by their texts and model name.

Asynchronously retrieves multiple cached embeddings in a single operation. If found, refreshes the TTL of each entry.

Parameters:
  • texts (List[str]) – List of text inputs that were embedded.

  • model_name (str) – The name of the embedding model.

Returns:

List of embedding cache entries or None for texts not found.

Return type:

List[Optional[Dict[str, Any]]]

# Get multiple embeddings asynchronously
embedding_data = await cache.amget(
    texts=["What is machine learning?", "What is deep learning?"],
    model_name="text-embedding-ada-002"
)
async amget_by_keys(keys)[source]#

Async get multiple embeddings by their Redis keys.

Asynchronously retrieves multiple cached embeddings in a single network roundtrip. If found, refreshes the TTL of each entry.

Parameters:

keys (List[str]) – List of Redis keys to retrieve.

Returns:

List of embedding cache entries or None for keys not found. The order matches the input keys order.

Return type:

List[Optional[Dict[str, Any]]]

# Get multiple embeddings asynchronously
embedding_data = await cache.amget_by_keys([
    "embedcache:key1",
    "embedcache:key2"
])
async amset(items, ttl=None)[source]#

Async store multiple embeddings in a batch operation.

Each item in the input list should be a dictionary with the following fields: - ‘text’: The text input that was embedded - ‘model_name’: The name of the embedding model - ‘embedding’: The embedding vector - ‘metadata’: Optional metadata to store with the embedding

Parameters:
  • items (List[Dict[str, Any]]) – List of dictionaries, each containing text, model_name, embedding, and optional metadata.

  • ttl (int | None) – Optional TTL override for these entries.

Returns:

List of Redis keys where the embeddings were stored.

Return type:

List[str]

# Store multiple embeddings asynchronously
keys = await cache.amset([
    {
        "text": "What is ML?",
        "model_name": "text-embedding-ada-002",
        "embedding": [0.1, 0.2, 0.3],
        "metadata": {"source": "user"}
    },
    {
        "text": "What is AI?",
        "model_name": "text-embedding-ada-002",
        "embedding": [0.4, 0.5, 0.6],
        "metadata": {"source": "docs"}
    }
])
async aset(text, model_name, embedding, metadata=None, ttl=None)[source]#

Async store an embedding with its text and model name.

Asynchronously stores an embedding with its text and model name.

Parameters:
  • text (str) – The text input that was embedded.

  • model_name (str) – The name of the embedding model.

  • embedding (List[float]) – The embedding vector to store.

  • metadata (Optional[Dict[str, Any]]) – Optional metadata to store with the embedding.

  • ttl (Optional[int]) – Optional TTL override for this specific entry.

Returns:

The Redis key where the embedding was stored.

Return type:

str

key = await cache.aset(
    text="What is machine learning?",
    model_name="text-embedding-ada-002",
    embedding=[0.1, 0.2, 0.3, ...],
    metadata={"source": "user_query"}
)
clear()#

Clear the cache of all keys.

Return type:

None

disconnect()#

Disconnect from Redis.

Return type:

None

drop(text, model_name)[source]#

Remove an embedding from the cache.

Parameters:
  • text (str) – The text input that was embedded.

  • model_name (str) – The name of the embedding model.

Return type:

None

cache.drop(
    text="What is machine learning?",
    model_name="text-embedding-ada-002"
)
drop_by_key(key)[source]#

Remove an embedding from the cache by its Redis key.

Parameters:

key (str) – The full Redis key for the embedding.

Return type:

None

cache.drop_by_key("embedcache:1234567890abcdef")
exists(text, model_name)[source]#

Check if an embedding exists for the given text and model.

Parameters:
  • text (str) – The text input that was embedded.

  • model_name (str) – The name of the embedding model.

Returns:

True if the embedding exists in the cache, False otherwise.

Return type:

bool

if cache.exists("What is machine learning?", "text-embedding-ada-002"):
    print("Embedding is in cache")
exists_by_key(key)[source]#

Check if an embedding exists for the given Redis key.

Parameters:

key (str) – The full Redis key for the embedding.

Returns:

True if the embedding exists in the cache, False otherwise.

Return type:

bool

if cache.exists_by_key("embedcache:1234567890abcdef"):
    print("Embedding is in cache")
expire(key, ttl=None)#

Set or refresh the expiration time for a key in the cache.

Parameters:
  • key (str) – The Redis key to set the expiration on.

  • ttl (Optional[int], optional) – The time-to-live in seconds. If None, uses the default TTL configured for this cache instance. Defaults to None.

Return type:

None

Note

If neither the provided TTL nor the default TTL is set (both are None), this method will have no effect.

get(text, model_name)[source]#

Get embedding by text and model name.

Retrieves a cached embedding for the given text and model name. If found, refreshes the TTL of the entry.

Parameters:
  • text (str) – The text input that was embedded.

  • model_name (str) – The name of the embedding model.

Returns:

Embedding cache entry or None if not found.

Return type:

Optional[Dict[str, Any]]

embedding_data = cache.get(
    text="What is machine learning?",
    model_name="text-embedding-ada-002"
)
get_by_key(key)[source]#

Get embedding by its full Redis key.

Retrieves a cached embedding for the given Redis key. If found, refreshes the TTL of the entry.

Parameters:

key (str) – The full Redis key for the embedding.

Returns:

Embedding cache entry or None if not found.

Return type:

Optional[Dict[str, Any]]

embedding_data = cache.get_by_key("embedcache:1234567890abcdef")
mdrop(texts, model_name)[source]#

Remove multiple embeddings from the cache by their texts and model name.

Efficiently removes multiple embeddings in a single operation.

Parameters:
  • texts (List[str]) – List of text inputs that were embedded.

  • model_name (str) – The name of the embedding model.

Return type:

None

# Remove multiple embeddings
cache.mdrop(
    texts=["What is machine learning?", "What is deep learning?"],
    model_name="text-embedding-ada-002"
)
mdrop_by_keys(keys)[source]#

Remove multiple embeddings from the cache by their Redis keys.

Efficiently removes multiple embeddings in a single operation.

Parameters:

keys (List[str]) – List of Redis keys to remove.

Return type:

None

# Remove multiple embeddings
cache.mdrop_by_keys(["embedcache:key1", "embedcache:key2"])
mexists(texts, model_name)[source]#

Check if multiple embeddings exist by their texts and model name.

Efficiently checks existence of multiple embeddings in a single operation.

Parameters:
  • texts (List[str]) – List of text inputs that were embedded.

  • model_name (str) – The name of the embedding model.

Returns:

List of boolean values indicating whether each embedding exists.

Return type:

List[bool]

# Check if multiple embeddings exist
exists_results = cache.mexists(
    texts=["What is machine learning?", "What is deep learning?"],
    model_name="text-embedding-ada-002"
)
mexists_by_keys(keys)[source]#

Check if multiple embeddings exist by their Redis keys.

Efficiently checks existence of multiple keys in a single operation.

Parameters:

keys (List[str]) – List of Redis keys to check.

Returns:

List of boolean values indicating whether each key exists. The order matches the input keys order.

Return type:

List[bool]

# Check if multiple keys exist
exists_results = cache.mexists_by_keys(["embedcache:key1", "embedcache:key2"])
mget(texts, model_name)[source]#

Get multiple embeddings by their texts and model name.

Efficiently retrieves multiple cached embeddings in a single operation. If found, refreshes the TTL of each entry.

Parameters:
  • texts (List[str]) – List of text inputs that were embedded.

  • model_name (str) – The name of the embedding model.

Returns:

List of embedding cache entries or None for texts not found.

Return type:

List[Optional[Dict[str, Any]]]

# Get multiple embeddings
embedding_data = cache.mget(
    texts=["What is machine learning?", "What is deep learning?"],
    model_name="text-embedding-ada-002"
)
mget_by_keys(keys)[source]#

Get multiple embeddings by their Redis keys.

Efficiently retrieves multiple cached embeddings in a single network roundtrip. If found, refreshes the TTL of each entry.

Parameters:

keys (List[str]) – List of Redis keys to retrieve.

Returns:

List of embedding cache entries or None for keys not found. The order matches the input keys order.

Return type:

List[Optional[Dict[str, Any]]]

# Get multiple embeddings
embedding_data = cache.mget_by_keys([
    "embedcache:key1",
    "embedcache:key2"
])
mset(items, ttl=None)[source]#

Store multiple embeddings in a batch operation.

Each item in the input list should be a dictionary with the following fields: - ‘text’: The text input that was embedded - ‘model_name’: The name of the embedding model - ‘embedding’: The embedding vector - ‘metadata’: Optional metadata to store with the embedding

Parameters:
  • items (List[Dict[str, Any]]) – List of dictionaries, each containing text, model_name, embedding, and optional metadata.

  • ttl (int | None) – Optional TTL override for these entries.

Returns:

List of Redis keys where the embeddings were stored.

Return type:

List[str]

# Store multiple embeddings
keys = cache.mset([
    {
        "text": "What is ML?",
        "model_name": "text-embedding-ada-002",
        "embedding": [0.1, 0.2, 0.3],
        "metadata": {"source": "user"}
    },
    {
        "text": "What is AI?",
        "model_name": "text-embedding-ada-002",
        "embedding": [0.4, 0.5, 0.6],
        "metadata": {"source": "docs"}
    }
])
set(text, model_name, embedding, metadata=None, ttl=None)[source]#

Store an embedding with its text and model name.

Parameters:
  • text (str) – The text input that was embedded.

  • model_name (str) – The name of the embedding model.

  • embedding (List[float]) – The embedding vector to store.

  • metadata (Optional[Dict[str, Any]]) – Optional metadata to store with the embedding.

  • ttl (Optional[int]) – Optional TTL override for this specific entry.

Returns:

The Redis key where the embedding was stored.

Return type:

str

key = cache.set(
    text="What is machine learning?",
    model_name="text-embedding-ada-002",
    embedding=[0.1, 0.2, 0.3, ...],
    metadata={"source": "user_query"}
)
set_ttl(ttl=None)#

Set the default TTL, in seconds, for entries in the cache.

Parameters:

ttl (Optional[int], optional) – The optional time-to-live expiration for the cache, in seconds.

Raises:

ValueError – If the time-to-live value is not an integer.

Return type:

None

property ttl: int | None#

The default TTL, in seconds, for entries in the cache.